# 12. Optisch aktive Lycopin-epoxide und Lycopin-glycole: Synthesen und chiroptische Eigenschaften

von Heidi Meier, Peter Uebelhart und Conrad Hans Eugster\*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

## (I.XI.85)

## Optically Active Lycopene Epoxides and Lycopene Glycols: Synthesis and Chiroptical Properties

We present extensive spectral and chiroptical data on the pure and crystalline lycopene diepoxides 1-3 and glycols 4-9. A first synthetic approach to 1-9 with (+)-malic acid as starting material afforded 30 as a complex mixture of isomers (*Scheme 1*). Pure stereoisomers 1-9 were obtained using the enantiomerically pure epoxygeraniol 31 as starting material (*Scheme 2*). Differentiation of the (5*Z*)- from the (all-*E*)-isomers by <sup>1</sup>H-NMR and UV/VIS alone is very difficult.

1. Einleitung. – Die absolute Konfiguration eines acyclischen optisch aktiven Carotinoids lässt sich auch heute noch nicht mit Sicherheit aus CD-Daten allein herleiten, da sich scheinbar geringfügige strukturelle Änderungen in der weiteren Umgebung eines Chiralitätszentrums in unerwarteter Weise auf die *Cotton*-Effekte auswirken können. Beispiele sind Bacterioruberin ((2R, 2'R)-Chiralität [1], Revision [2]) und Oscillaxanthin ((2R, 2'R)-Chiralität [3], Revision [4]).

In der vorliegenden Mitteilung<sup>1</sup>) beschreiben wir Synthese und chiroptische Eigenschaften der Lycopin-diepoxide 1–3 sowie der Lycopin-glycole 4–9; s. *Fig. 1*. Es handelt sich um eine Erweiterung unserer Synthese der enantiomeren Aleuriaxanthine [7], die zugleich im Zusammhang mit unseren seit 1974 laufenden Untersuchungen über die Chiralität der Carotinoid-epoxide [8] und Carotinoid-glycole [9] steht. Vor kurzem haben *Pfander* und Mitarbeiter ihre umfangreichen Arbeiten über optisch aktive 1,2-Epoxycarotinoide ((S)-1,2-Epoxy-1,2-dihydrolycopin [10], (S)-1',2'-Epoxy-1',2'-dihydro- $\beta$ , $\psi$ -carotin [10] und (S)-1,2-Epoxy-1,2,7,8,7',8'-hexahydro- $\psi$ , $\psi$ -carotin [11]) veröffentlicht.

2. Synthesen. – Als geeignete Synthons für Synthesen von Lycopin-diepoxiden und -diglycolen zogen wir die gut zugänglichen optisch aktiven Verbindungen 10–12 (s. *Fig. 2*) in Betracht.

Das Keton (S)-10 ist entweder aus *L*-Glutaminsäure [12] oder aus *L*-Phenylalanin  $[13]^2$ ) zugänglich, (R)-10 wurde aus (R)-2-Hydroxy- $\gamma$ -butyrolacton gewonnen [14]. Das Keton (R)-11 ist von *Altman et al.* aus D-Äpfelsäure hergestellt worden [15] und (S)-12 von *Imai* und *Marumo* durch enzymatische Epoxydierung von Geraniumsäure-methylester [16].

Wir entschlossen uns, L-Äpfelsäure (vgl. 11) als Ausgangsmaterial zu verwenden; s. Schema 1. Das daraus erhaltene Anhydrid 13 wurde mit EtOH regioselektiv geöffnet

<sup>1)</sup> Vorläufige Mitt. [5]; vgl. auch [6].

<sup>&</sup>lt;sup>2</sup>) Der analoge Abbau von L-Tyrosin-methyläther wurde 1979/80 von A. Hofer ausgearbeitet; s. [5].

HELVETICA CHIMICA ACTA - Vol. 69 (1986)







© EtOH, 95%; ©  $B_2H_6/THF$ , 62–68%; 3,4-Dihydro-2*H*-pyran/Pyridinium-(*p*-toluolsulfonat), 95%; © CH<sub>3</sub>Li, 69%; © (CH<sub>3</sub>O)<sub>2</sub>C(CH<sub>3</sub>)<sub>2</sub>/TsOH, 75% (→18), Pyridinium-(*p*-toluolsulfonat)/EtOH, 88% (→19); © TsCl/Py, 81%; © LiBr, 95% (→21); Mg (→22); © CuI/Pyrrolidin; Tetrolsäure-methylester, 64% bzgl. 21 (→23); DIBAH, 95% (→24); Ac<sub>2</sub>O/Py, 93% (→25); © 90% HOAc, 82% (→26); Ac<sub>2</sub>O/Py, 82% (→27); KHCO<sub>3</sub>/H<sub>2</sub>O/CH<sub>3</sub>OH, 68% (→28); PBr<sub>3</sub>/Ph<sub>3</sub>P, 52% (→29); © C<sub>20</sub>-Dial/50proz. wässr. KOH/CH<sub>2</sub>Cl<sub>2</sub>, 50%.

 $(\rightarrow 14)$  und hierauf mit Diboran zu 15 reduziert (vgl. [15] und *Exper. Teil* dieser Arbeit). Nach Schutz der OH-Gruppe  $(\rightarrow 16)$  wurde mit CH<sub>3</sub>Li umgesetzt und 17 erhalten, welches nach Überführung in das Dioxolan 18, Spaltung des THP-äthers  $(\rightarrow 19)$  und Tosylierung den *p*-Toluolsulfonsäureester 20 ergab, dessen  $[\alpha]_0$  mit den Literaturdaten gut übereinstimmte ([13]:  $-17,6^\circ$ ; [14]:  $+17,0^\circ$  für das Enantiomere). Mittels LiBr wurde aus 20 das Bromid 21 hergestellt. Die Herstellung des *Grignard*-Reagenzes 22 verlangte sorgfältig kontrollierte Bedingungen. Als Nebenreaktion trat die reduktive Dimerisierung von 21 in Erscheinung. Mit Hilfe der Cupratverbindung, hergestellt aus 22, konnte eine stereospezifische *syn*-Alkylierung von Tetrolsäure-methylester (= 2-Butinsäure-methylester) erreicht werden; das in *ca*. 65proz. Ausbeute erhaltene 23 wies nach GC einen (*E*)-Gehalt von 94–96% auf. Nach Reduktion der Estergruppe ( $\rightarrow 24$ )<sup>3</sup>) und Acetylierung

<sup>&</sup>lt;sup>3</sup>) Dem gemessenen  $\left[\alpha\right]_{22}^{22}$ -Wert von  $-1.9^{\circ}$  (EtOH) steht der Literaturwert von  $+15.1^{\circ}$  (MeOH) [12] gegenüber.

zu 25 wurde der Dioxolan-Ring mit HOAc hydrolysiert<sup>4</sup>) und das erhaltene 26 anschliessend zu 27 acetyliert. Die allylische O-Acetylgruppe liess sich hierauf mit der Methode von *Reichstein* [17] selektiv zu 28 verseifen. Mit diesem Umweg wurde vermieden, dass das schwierig zu reinigende Triol als Zwischenprodukt auftrat. Mit PBr<sub>3</sub> und Ph<sub>3</sub>P wurde aus 28 schliesslich das Phosphoniumbromid 29 erhalten. Mit Hilfe einer Zweiphasen-*Wittig*-Reaktion erhielten wir aus 29 und Crocetindialdehyd kristallines Diessigsäure-[(2S,2'S)-1,2,1',2'-tetrahydro-1,1'-dihydroxy- $\psi$ , $\psi$ -carotin-2,2'-diyl]diester (30) in *ca*. 50proz. Ausbeute. Es erwies sich als schwierig zu trennendes (*E*/*Z*)-Isomerengemisch, in welchem wir auch die nicht leicht nachweisbaren [18] (5*Z*)-Isomeren vermuteten.



Da inzwischen eine ergiebige Synthese der enantiomeren 6,7-Epoxydihydrogeraniole entwickelt wurde [7], führten wir die Synthese der Lycopin-epoxide und -glycole mit diesen Synthons durch; s. *Schema 2*. Das Phosphoniumsalz **32** liess sich aus dem Epoxydihydrogeraniol **31** bei Einhaltung milder Reaktionsbedingungen ohne Schwierigkeiten herstellen und im Zweiphasensystem Et<sub>2</sub>O/NaOCH<sub>3</sub>/MeOH mit Crocetin-dialdehyd zum kristallinen (2R,2'R)-Diepoxylycopin **33** umsetzen. Die HPLC-Analyse zeigte, dass ein Gemisch von **3** Hauptkomponenten **A**–**C** vorlag; s. *Fig. 3*. Sie wurden durch präp. HPLC getrennt und identifiziert; s. *Kap. 3*.

Zur Synthese der Glycole 39 wurde 34 solvolytisch geöffnet und das entstandene 35 zuerst zu 36 acetyliert und hierauf partiell zu 37 hydrolysiert (Methode nach [17]). Mit

109

5

<sup>&</sup>lt;sup>4</sup>) Auf dieser Stufe stimmt der  $[\alpha]_{D}^{22}$ -Wert von  $-25.7^{\circ}$  gut mit dem publizierten Wert überein ( $-25.1^{\circ}$  [7]).





Fig. 4. Anal. HPLC-Auftrennung der Silyloxyacetoxy-carotinoide 4 (F), 5 (E) und 6 (D)

. . . . . . .

PBr<sub>3</sub> und Ph<sub>3</sub>P wurde hierauf das Phosphoniumsalz **38** hergestellt, dessen Kondensation mit NaH/CH<sub>2</sub>Cl<sub>2</sub> und Crocetin-dialdehyd das gewünschte Diacetoxylycopindiol **39** als Stereoisomerengemisch ergab. Um eine bessere Auftrennung zu erreichen, wurde **39** *O*-silyliert und hierauf das kristalline Isomerengemisch **40** durch präp. HPLC in **D**, **E** und **F** getrennt; s. *Fig. 4*. Aus den einzelnen, kristallin erhaltenen Isomeren wurden durch Verseifung mit 10proz. KOH/MeOH die ebenfalls kristallinen, isomerenfreien (2*R*,2'*R*)-Lycopintetrole **7–9** hergestellt.

**3.** Struktur und Eigenschaften der Lycopin-epoxide und -glycole. – Isomer B. Dunkelrote, feine Nädelchen. Das UV/VIS-Spektrum (Fig. 5), Tab. 1 zeigt ausgeprägte Feinstruktur und gute Übereinstimmung mit den Daten von Lycopin (vgl. z. B. [19]), sodass

|                | 1 ( 1) E)                        | 2(57)             | 3 (77)            | 4 ( 11 E)                       |
|----------------|----------------------------------|-------------------|-------------------|---------------------------------|
|                | 1 (all- <i>E</i> )               | 2(52)             | 3(/Z)             | 4 (all- <i>E</i> )              |
| Schmp.         | 187,9–188,6°                     | 147,2–148,0°      |                   | 119-120°                        |
| UV/VIS         | Et <sub>2</sub> O                | Et <sub>2</sub> O | Et <sub>2</sub> O | CH <sub>2</sub> Cl <sub>2</sub> |
|                | 499 (149 300), 468 (162 800),    | 499 (153 300)     | 497 (121 700)     | 511 (137500                     |
|                | 442 (108 800), 293 (49 100)      | 468 (167000)      | 467 (145200)      | 478 (1 <b>56600</b>             |
|                |                                  | 442 (110 800)     | 444 (106 300)     | 451 (105000                     |
|                |                                  | 293 (45200)       | 294 (32700)       | 297 (41 000                     |
| CD (EPA, RT.)  | 220 (0), 250 (-1,7), 261 (0),    | 223 (-1,3)        |                   | 253 (0)                         |
|                | 292 (+4,2), 312 (0), 356 (-1,3)  | 238 (0)           |                   | 203 (0)                         |
|                |                                  | 267 (-0,5)        |                   | 290(+2.3)                       |
|                |                                  | 291 (-1,4)        |                   | 2,0 (1,2,0)                     |
|                |                                  | 307 (0)           |                   | 348 (0)                         |
|                |                                  | 352 (+0,3)        |                   | (-)                             |
| CD (EPA,180°)  | 217 (0), 226 (-2,4), 252 (-3,1), | 217 (0)           |                   |                                 |
| 、 <i>、 、 、</i> | 259 (0), 286 (+5,4), 294 (+9,3), | 224(-1,8)         | 224 (-4,1)        |                                 |
|                | 314 (0), 365 (-2,8)              | 227 (0)           | 236 (0)           | 234 (+2,0)                      |
|                |                                  | 252 (+6,0)        | 253 (+2,6)        | 252 (0)                         |
|                |                                  | 271 (0)           | 261 (0)           | 265 (+2,0)                      |
|                |                                  | 284 (-3,8)        | 287 (-1,5)        | 287 (+7,1)                      |
|                |                                  | 295 (-7,8)        | 297 (-1,9)        | 296 (+8,7)                      |
|                |                                  | 306 (0)           | 325 (0)           | 342 (0)                         |
|                |                                  | 365 (+2,6)        | 369 (+0,8)        | 367 (0,8)                       |

110



auf das Vorliegen der (all-E)-Verbindung geschlossen werden kann. Dies wird durch das

400-MHz-'H-NMR-Spektrum und dessen Vergleich mit den Daten von *Englert* [20], *Moss* [21] und *Zumbrunn* [18] bestätigt; s. *Tab. 2* und *Fig. 6a*. Somit liegt (2R,2'R)-1,2,1',2'-Diepoxy-1,2,1',2'-tetrahydro- $\psi,\psi$ -carotin (1) vor.

*Isomer* C. Dunkelrote Kristalle. Die Feinstruktur im langwelligen Bereich des UV/ VIS-Spektrums (*Fig. 7*) und die ausgesprochen hohe Extinktion lassen an sich auf eine (all-*E*)-Verbindung schliessen, doch zeigt schon der im Vergleich mit 1 relativ tiefe Schmp. unmissverständlich, dass (*Z*/*E*)-Isomerie vorliegt. Das <sup>1</sup>H-NMR-Spektrum von C ist typisch für eine unsymmetrische Verbindung. Durch Vergleich mit den kürzlich gemessenen Daten von (5*Z*)-Lycopinen und (5*Z*)-Neurosporinen [18] wird das überraschende Vorliegen einer (5*Z*)-Verbindung, nämlich von (2*R*,2'*R*,5*Z*)-1,2,1',2'-Diepoxy-1,2,1',2'-tetrahydro- $\psi$ , $\psi$ -carotin (**2**) bewiesen; s. *Tab. 1* und 2 sowie *Fig. 6b* und 8.

| der | Carol | inoide | 1-9 |  |
|-----|-------|--------|-----|--|
|     |       |        |     |  |

| 5(7Z)                                                                                                                   | <b>6</b> (7 <i>Z</i> ,7' <i>Z</i> )                                                                                   |                |                                                                                                                 | 7 (all-E)                                                                                                 | <b>8</b> (7 <i>H</i> )                                                                                                | 9 (7Z,7'Z)                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 127,6–128,7°                                                                                                            | 120,8–121,6°                                                                                                          |                |                                                                                                                 | 213,5–214,7°                                                                                              | 212,9–214,0°                                                                                                          | 157,7–158,5°                                                                                             |
| CH <sub>2</sub> Cl <sub>2</sub><br>509 (116 200)<br>477 (141 200)<br>453 (102 100)                                      | CH <sub>2</sub> Cl <sub>2</sub><br>504 (99 700)<br>476 (128 000)<br>454 (101 000)                                     |                |                                                                                                                 | CH <sub>2</sub> Cl <sub>2</sub><br>511 (136 100)<br>478 (154400)<br>452 (103 300)                         | CH <sub>2</sub> Cl <sub>2</sub><br>508 (111400)<br>477 (135500)<br>454 (99 200)                                       | CH <sub>2</sub> Cl <sub>2</sub><br>503 (95 200)<br>475 (122 300)<br>454 (99 200)                         |
| 236 (0)<br>251 (+1,6)<br>260 (0)<br>292 (-3,8)<br>312 (0)<br>359 (+0,4)<br>368 (0)                                      | 297 (24700)<br>235 (0)<br>250 (+1,7)<br>263 (0)<br>294 (-6,2)<br>316 (0)<br>346 (+1,1)                                |                |                                                                                                                 | 296 (41100)<br>223 (0)<br>252 (-3,1)<br>260 (0)<br>293 (+10,3)<br>320 (0)<br>360 (-2,8)                   | 236 (0)<br>252 (+2,0)<br>269 (0)<br>294 (-1,2)<br>300 (0)<br>358 (+0,5)                                               | 257 (24200)<br>252 (+2,0)<br>262 (0)<br>296 (-6,5)<br>321 (0)<br>350 (+1,2)<br>376 (0)                   |
| 212 (+9,4)<br>226 (+1,9)<br>248 (+12,5)<br>254 (+21,1)<br>275 (0)<br>286 (-9,0)<br>297 (-20,1)<br>308 (0)<br>367 (+7,3) | 214 (0)<br>227 (+45,3)<br>238 (0)<br>249 (-13,1)<br>256 (-34,3)<br>288 (-6,2)<br>298 (-10,4)<br>368 (-4,2)<br>380 (0) | CD (EPA, -50°) | 213 (0)<br>226 (+9,8)<br>249 (0)<br>253 (-2,2)<br>257 (0)<br>260 (+1,6)<br>298 (-13,6)<br>354 (+1,8)<br>390 (0) | 230 (-5,3)<br>248 (-6,3)<br>254 (-11,7)<br>264 (0)<br>285 (+15,9)<br>296 (+25,6)<br>322 (0)<br>368 (-6,5) | 214 (0)<br>227 (-14,5)<br>234 (0)<br>249 (+10,4)<br>255 (+21,7)<br>288 (-5,5)<br>298 (-11,1)<br>316 (0)<br>368 (+4,2) | 211 (0)<br>228 (+23,9)<br>239 (0)<br>249 (-6,8)<br>256 (-17,3)<br>272 (-1,6)<br>300 (-4,4)<br>370 (-4,0) |

|                                                                   | 1 (= B)                     | <b>2</b> ( = C)         | $3(\mathbf{A})$          |
|-------------------------------------------------------------------|-----------------------------|-------------------------|--------------------------|
| CH <sub>3</sub> (16), CH <sub>3</sub> (17)                        |                             | 1,275(s), 1,293(s)      | 1,234(s), 1,310(s)       |
| CH <sub>3</sub> (16'), CH <sub>3</sub> (17')                      | 1,267(s), 1,306(s)          | 1,267(s), 1,306(s)      | 1,266(s), 1,306(s)       |
| CH <sub>3</sub> (18)                                              | 1.82((-)                    | 1.840( )                | 1,798(s)                 |
| CH <sub>3</sub> (18')                                             | 1,830(8)                    | 1,840(s)                | 1,830(s)                 |
| CH <sub>3</sub> (19)                                              | 10(8(-)                     | 1,955(s)                | 2,080(s)                 |
| CH <sub>3</sub> (19'),CH <sub>3</sub> (20), CH <sub>3</sub> (20') | 1,968(3)                    | 1,968(s)                | 1,965(s)                 |
| H-C(2)                                                            | 2.724(4, 1 - (2))           | 2,743(t, J = 6,3)       | 2,74(t, J = 6,5)         |
| H-C(2')                                                           | 2,724(t, J = 0,3)           | 2,723(t, J = 6,3)       | 2,73(t, J = 6,5)         |
| 2 H-C(3,3')                                                       | 1,61-1,75( <i>m</i> )       | 1,58–1,79( <i>m</i> )   | 1,56-1,77(m)             |
| 2 H-C(4,4')                                                       | 2,16-2,33(m)                | 2,375(dd, J = 7,6)      | 2,16-2,37(m)             |
|                                                                   |                             | 2,16-2,33(m)            |                          |
| H-C(6)                                                            | 5086(5 I - 11)              | 5.095(d I - 11)         | 6,489(d, J = 11)         |
| H-C(6')                                                           | 5,980(0, J = 11)            | 5,985(a, J = 11)        | 5,981(d, J = 11)         |
| H-C(7)                                                            | (A7(JJ J - 11 15))          | 6,479(dd, J = 11, 15)   | 6,147(dd, J = 11, 12)    |
| H-C(7')                                                           | 6,476(aa, J = 11, 15)       |                         | 6,469(dd, J = 11, 15)    |
| H-C(8)                                                            | (260/3, I - 15)             | 6,240(d, J = 15)        | 5,879(d, J = 12)         |
| H-C(8')                                                           | 0,200(a, J = 15)            | 6,26(d, J = 15)         | 6,251(d, J = 15)         |
| HC(10)                                                            | (101)(1 + 11)(1)            | (190(J, L - 11, 2))     | 6,228(d, J = 12)         |
| H-C(10')                                                          | 0,191(a, J = 11,4)          | 0,189(a, J = 11,3)      | 6,191(d, J = 11,8)       |
| H-C(11)                                                           |                             | 6,632(dd, J = 11,3, 15) | 6,587(dd, J = 11, 8, 15) |
| H-C(11')                                                          | 0,032(aa, J - 11, 4, 14, 9) |                         | 6,626(dd, J = 11, 8, 15) |
| HC(12)                                                            | 6.261(J, I = 14.0)          | (250)/J = (15)          | 6262(J I - 15)           |
| H-C(12')                                                          | 0,301(a, J = 14,9)          | 6,339(a, J - 13)        | 0,303(a, J - 13)         |
| H-C(14,14')                                                       | 6,25( <i>m</i> )            | 6,26(m)                 | 6,26( <i>m</i> )         |
| H = C(15.15')                                                     | 6.63(m)                     | 6.63(m)                 | 6.63(m)                  |

Tab. 2. <sup>1</sup>*H-NMR-Daten der Carotine* 1–9 (400 MHz, CDCl<sub>3</sub>). Chem. Verschiebung  $\delta_{\rm H}$  in ppm; Kopplungskonstanten *J* in Hz.

# Tab.2 (Fortsetzung)

|                                                                                            | $4(=\mathbf{F})$        | 5 ( = E)                                       | 6 ( = D)                       |
|--------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------|--------------------------------|
| CH <sub>3</sub> (16), CH <sub>3</sub> (17)<br>CH <sub>3</sub> (16'), CH <sub>3</sub> (17') | 1,18(s)                 | 1,18(s)                                        | 1,18(s)                        |
| CH <sub>3</sub> (18)<br>CH <sub>3</sub> (18')                                              | 1,809(s)                | 1,775(s)<br>1,810(s)                           | 1,775( <i>s</i> )              |
| CH <sub>3</sub> (19)<br>CH <sub>3</sub> (19'), CH <sub>3</sub> (20), CH <sub>3</sub> (20') | 1,968(s)                | 2,106(s)<br>1,967(s)                           | 2,086(s)<br>2,086(s), 1,972(s) |
| H-C(2)<br>H-C(2')                                                                          | 4,769( <i>m</i> )       | 4,774( <i>m</i> )                              | <b>4,776</b> ( <i>m</i> )      |
| 2 H-C(3,3')                                                                                | 1,53-1,66( <i>m</i> )   | 1,51-1,68(m)                                   | 1,50-1,68(m)                   |
| 2 H-C(4,4')                                                                                | 2,02-2,11(m)            | 1,98-2,09(m)                                   | 2,01-2,14(m)                   |
| H-C(6)<br>H-C(6')                                                                          | 5,94(d, J = 11)         | 6,465(d, J = 11)<br>5,930(d, J = 11)           | 6,453(d, J = 11)               |
| H–C(7)<br>H–C(7')                                                                          | 6,474(dd, J = 11, 15)   | 6,150(dd, J = 11, 12)<br>6,474(dd, J = 11, 15) | 6,145(dd, J = 11, 12)          |
| H-C(8)<br>H-C(8')                                                                          | 6,269(d, J = 15)        | 5,878(d, J = 12)<br>6,270(d, J = 15)           | 5,867(d, J = 12)               |
| H-C(10)<br>H-C(10')                                                                        | 6,190(d, J = 11,4)      | 6,238(d, J = 11)<br>6,191(d, J = 11)           | 6,238(d, J = 11)               |
| H–C(11)<br>H–C(11')                                                                        | 6,631(dd, J = 11,4, 15) | 6,603(dd, J = 11, 15)<br>6,631(dd, J = 11, 15) | 6,598(dd, J = 11, 15)          |
| H-C(12)<br>H-C(12')                                                                        | 6,363(d, J = 15)        | 6,383(d, J = 15) 6,367(d, J = 15)              | 6,373(d, J = 15)               |
| H-C(14,14')                                                                                | 6,26( <i>m</i> )        | 6,27(m)                                        | 6,26(m)                        |
| H-C(15,15')                                                                                | 6,63( <i>m</i> )        | 6,63( <i>m</i> )                               | 6,63( <i>m</i> )               |

| ······································                                                     | 7                             | 8                                              | 9                                    |
|--------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------|--------------------------------------|
| $CH_3(16), CH_3(17)$<br>$CH_2(16'), CH_3(17')$                                             | 1,179(s), 1,226(s)            | 1,180(s), 1,228(s)                             | 1,180(s), 1,228(s)                   |
| CH <sub>3</sub> (18)<br>CH <sub>3</sub> (18')                                              | 1,843(s)                      | 1,831(s)<br>1,844(s)                           | 1,813(s)                             |
| CH <sub>3</sub> (19)<br>CH <sub>3</sub> (19'), CH <sub>3</sub> (20), CH <sub>3</sub> (20') | 1,978(s)                      | 2,082(s)<br>1,982(s)                           | 2,082(s)<br>2,082(s), 1,984(s)       |
| HC(2)<br>HC(2')                                                                            | 3,378( <i>m</i> )             | 3,38( <i>m</i> )                               | 3,391( <i>m</i> )                    |
| 2 H–C(3,3')                                                                                | 1,42-1,54(m),<br>1,58-1,71(m) | 1,42-1,55(m),<br>1,57-1,71(m)                  | 1,43-1,57(m),<br>1,57-1,71(m)        |
| 2 H-C(4,4')                                                                                | 2,15-2,25(m),<br>2,34-2,44(m) | 2,14-2,25(m),<br>2,33-2,44(m)                  | 2,16-2,26(m),<br>2,35-2,45(m)        |
| H-C(6)<br>H-C(6')                                                                          | 6,019(d, J = 11)              | 6,507(d, J = 11)<br>6,020(d, J = 11)           | 6,508(d, J = 11)                     |
| H-C(7)<br>H-C(7')                                                                          | 6,486(dd, J = 11, 15)         | 6,166(dd, J = 11, 12)<br>6,488(dd, J = 11, 15) | 6,166(dd, J = 11, 12)                |
| H-C(8)<br>H-C(8')                                                                          | 6,267( <i>m</i> )             | 5,888(d, J = 12)<br>6,258(m)                   | 5,888(d, J = 12)                     |
| H-C(10)<br>H-C(10')                                                                        | 6,198(d, J = 11)              | 6,243(d, J = 11)<br>6,200(d, J = 11)           | 6,244(d, J = 11)                     |
| H-C(11)<br>H-C(11')                                                                        | 6,641(dd, J = 11, 15)         | 6,603(dd, J = 11, 15)<br>6,63(dd, J = 11, 15)  | 6,600(dd, J = 11, 15)                |
| H-C(12)<br>H-C(12')                                                                        | 6,370(d, J = 15)              | 6,370(d, J = 15)                               | 6,368(d, J = 15)                     |
| H-C(14,14')<br>H-C(15,15')                                                                 | 6,267(m)<br>6,64(m)           | 6,258( <i>m</i> )<br>6,63( <i>m</i> )          | 6,26( <i>m</i> )<br>6,64( <i>m</i> ) |





Fig. 6b. <sup>1</sup>H-NMR-Spektrum von 2 (= C), Olefinregion



Fig. 6c. <sup>1</sup>H-NMR-Spektrum von 3 ( =  $\mathbf{A}$ ), Olefinregion





Fig. 8. Differenz der  $\delta_H$  (400 MHz, CDCl<sub>3</sub>;  $\Delta \delta = \{\delta(Z) - \delta(E) \mid ppm\}$  für die (Z)-Carotinoide 2, 3 und 8/9 im Vergleich mit entsprechenden (all-E)-Carotinoiden



Isomer A. Amorphe, rote Substanz, deren UV/VIS-Spektrum (Fig. 9, Tab. 1) verminderte Feinstruktur und reduzierte Extinktion aufweist. Da der cis-Pik äusserst schwach ist, kommt nur eine periphere Lage für die Isomerie in Frage. Dass es sich um die (7Z)-Verbindung 3 handelt, geht aus dem Vergleich mit den Daten von [18] [19] besonders klar hervor; s. Tab. 2 sowie Fig. 6c und 8. Gute Übereinstimmung besteht auch mit den Daten des in [10] beschriebenen (2S,7Z)-1,2-Epoxy-1,2-dihydrolycopins. Somit ist A (2R,2'R,7Z)-1,2,1',2'-Diepoxy-1,2,1',2'-tetrahydro- $\psi,\psi$ -carotin (3).

Isomer F und Glycol 7. Die Silyloxyverbindung F wurde in roten Kristallen, das Glycol in dunkelroten feinen Nädelchen erhalten. Die 'H-NMR-Spektren (*Tab.2*) weisen auf symmetrische Verbindungen hin. Aus den Kopplungskonstanten der Olefinprotonen, ihren chemischen Verschiebungen und aus dem Fehlen der charakteristischen Isomerisierungsverschiebungen, die bei Vorliegen (Z/E)-isomerer Verbindungen auftreten müssten, ergibt sich zudem die (all-*E*)-Konfiguration für F und 7. Auch ist die weitgehende Übereinstimmung der 'H-NMR-Daten mit denjenigen der Aleuriaxanthin-Endgruppe [7] hervorzuheben. Folglich hat das Isomer F die Struktur eines Diessigsäure-[(2R,2'R)-1,2,1',2'-tetrahydro-1,1'-bis(trimethylsilyloxy)- $\psi$ , $\psi$ -carotin-2,2'-diyl]diesters (4), und das





Fig. 11. UV/VIS- und CD-Spektren von 7 in  $CH_2Cl_2$ bzw. EPA. RT.: -----, -180°: -----.

aus 4 gebildete Glycol ist demnach (2R,2'R)-1,2,1',2'-Tetrahydro- $\psi,\psi$ -carotin-1,2,1',2'-tetrol (7). Daten und Spektren s. *Tab. 1* und 2 sowie *Fig. 10* und *11*.

Isomer E und Glycol 8. Die Silyloxyverbindung E wurde als rotviolette, glänzende Kristalle, das Glycol 8 in schwärzlichroten, feinen Kriställchen erhalten. Ihre Spektren



Fig. 14a. <sup>1</sup>H-NMR-Spektrum von 5 (  $= \mathbf{E}$ ), Olefinregion

Fig. 14b. <sup>1</sup>H-NMR-Spektrum von 8, Olefinregion

(*Fig. 12–14* sowie *Tab. 1* und *2*) und vor allem die Analyse der charakteristischen <sup>1</sup>H-NMR-Verschiebungsdifferenzen (s. *Fig. 8*) weisen ganz klar auf das Vorliegen von (7Z)-Isomeren hin. Daraus folgen die Strukturen eines Diessigsäure-[(2R,2'R,7Z)-1,2,1',2'-tetrahydro-1,1'-bis(trimethylsilyloxy)- $\psi$ , $\psi$ -carotin-2,2'-diyl]diesters (5) bzw. eines (2R,2'R,7Z)-1,2,1',2'-Tetrahydro- $\psi$ , $\psi$ -carotin-1,2,1',2'-tetrols (8).

Isomer **D** und Glycol **9**. Die Silyloxyverbindung **D** wurde in dunkelorangeroten, das Glycol **9** in dunkelroten Kristallen erhalten. Der Spektrenvergleich, (*Tab. 1* und 2 sowie *Fig. 15* und *16*) ergibt mit Hilfe der mehrfach erwähnten Argumente, dass einerseits Diessigsäure-[(2R,2'R,7Z,7'Z)-1,2,1',2'-tetrahydro-1,1'-bis(trimethylsilyloxy)- $\psi,\psi$ -carotin-2,2'-diyl]diester (**6**) und anderseits (2R,2'R,7Z,7'Z)-1,2,1',2'-Tetrahydro- $\psi,\psi$ -carotin-1,2,1',2'-tetrol (**9**) vorliegt.



**4. CD-Spektren.** – Die CD-Spektren der Verbindungen 1–9 bei RT. und –180° (–50°) (*Fig. 5, 7, 9–13, 15* und *16*;  $\Delta \epsilon$ -Werte in *Tab. 1*) zeigen im Gegensatz zu [10] über 400 nm keine signifikanten Effekte. Obschon die Chiralitätszentren  $3\sigma$ -Bindungen vom Ende der Polyenkette entfernt sind, ist ihr Einfluss deutlicher als erwartet, mit Ausnahme von 2, das besonders geringe  $\Delta \epsilon$ -Werte aufweist. Bei RT. ist der CD im Bereich 290–300 nm am ausgeprägtesten.

Wir sind nicht in der Lage, eine modellmässige Deutung der CD-Kurven, z. B. im Sinn von 'konservativ' oder 'nicht konservativ' [22], zu bieten. Deskriptiv lassen sich folgende Regelmässigkeiten herausheben, wobei wir zur Vereinfachung die 3 Bandensysteme unterscheiden: I (210–260 nm), II (270–300 nm), und II (320–400 nm): a) Innerhalb der Reihe 1, 4, 7, der Reihe 3, 5, 8 und der Reihe 6, 9 besteht jeweils analoger Kurvenverlauf bezüglich der Banden II und III. Unterschiede betreffen hauptsächlich die  $\Delta \varepsilon$ -Werte.

b) Die (5Z)-Verbindung 2 gleicht der (7Z)-Verbindung 3, jedoch sind die  $\Delta \varepsilon$ -Werte der letzteren bei  $-180^{\circ}$  viel geringer.

c) Sowohl die (5Z)- als auch die (7Z,7'Z)-Verbindungen weisen im Bereich der Banden I und III und im Vergleich mit den (all-E)-Verbindungen eindeutige Vorzeichenumkehr auf. Die Kurven sind jedoch wegen der unterschiedlichen Intensitäten nicht spiegelbildlich.

d) Kühlen auf  $-180^{\circ}$  bringt eine Intensitätszunahme, am ausgeprägtesten bei den (Z)-Isomeren. Die stärksten *Cotton*-Effekte weisen die Glycole und die Silyloxyverbindungen auf.

e) Der Vergleich der Diepoxyverbindung 1 mit der entsprechenden Monoepoxyverbindung von [10] zeigt, abgesehen vom Vorzeichen und obschon letztere nicht kristallin erhalten wurde, relativ gute Übereinstimmung. Die  $\Delta \varepsilon$ -Werte von 1 betragen im Bereich der Bande II etwas mehr als das Doppelte. Der Befund ist wichtig als Bestätigung für die getroffenen Konfigurationszuweisungen.

f) Einzelne CD-Kurven verändern sich beim Abkühlen drastisch, so tritt bei den (7Z,7'Z)-Verbindungen 6 und 9 Vorzeichenumkehr im Bereich der Banden I und III ein. Das bei  $-50^{\circ}$  aufgenommene CD-Spektrum zeigt eine Mittelstellung. Es darf deshalb angenommen werden, dass bei RT. andere helicale Konformationen vorherrschen als bei tiefer Temperatur. Assoziationseffekte können auch nicht ausgeschlossen werden.

Die vorliegenden Daten zeigen eindrücklich, wie schwierig es ist, aus CD-Daten allein gesicherte Schlüsse auf die Chiralität dieser offenkettigen Carotinoide zu ziehen.

Wir danken dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung für die teilweise Unterstützung dieser Arbeit, Herrn dipl. chem. M. Gmünder für die Mithilfe bei der Aufnahme der CD-Spektren und den analytischen Abteilungen unseres Instituts für Spektren und Verbrennungsanalysen.

#### **Experimenteller** Teil

Allgemeines. HPLC: Spherisorb CN-5, 4,6 × 250 mm und 22,5 × 250 mm (K. Bischoff, Stuttgart), für 1–392% A (Hexan/0,1% Et(i-Pr)<sub>2</sub>N) und 8% B (CH<sub>2</sub>Cl<sub>2</sub>/0,5% MeOH), Fluss 2 ml/min; für 4–6 A/B 92:8, Fluss 1 ml/min; *DuPont*-Pumpen 850 oder 870 mit *DuPont*-Programmiereinheit 850 oder 8800. Aufnahme der Chromatogramme und der UV/VIS-Spektren mit *Hewlett-Packard-1040A*-Detektionssystem ('multiarray') mit Programmiereinheiten *HP-85* bzw. *HP-85* B. UV/VIS: Spektrometer *Perkin-Elmer 552*. Opt. Drehung: Polarimeter *Perkin-Elmer 241*. CD: Spectropolarimeter *JASCO J-500A* und Kryostat Oxford-Instruments DN-704. Auswertung auf einem *Epson-QX-10*-Computer. IR: Spektrometer *Perkin-Elmer 297*. <sup>1</sup>H-NMR: *Varian FT-80A* (80 MHz), *Varian EM-360* (90 MHz) oder *Bruker-Spectrospin WM-400-FT* (400 MHz) mit *Aspect-2000*-Computer. EPA = Et<sub>2</sub>O/Isopentan/ EtOH 5.5:2, DIBAH = Diisobutylaluminiumhydrid, NBS = N-Bromsuccinimid, Py = Pyridin, PyTs = Pyridinium-(p-toluolsulfonat).

1. (2S)-Acetoxybernsteinsäure-monoäthylester (14). Die Lsg. von 50g (0,37 mol) (-)-L-Äpfelsäure (Fluka;  $[\alpha]_D = -26 \pm 2^\circ$  (c = 5,5, Pyridin)) in 150 ml (2,1 mol) AcCl wurde 3 h unter Rückfluss gekocht [23]. Das überschüssige AcCl wurde hierauf i. V. abdestilliert und der ölige Rückstand im Kragenkolben bei 115–120°/0,01 Torr destilliert: 71,5 g (95%) 14. Kristallisation aus wenig AcOEt ergab 63% Kristalle, Schmp. 43,6–46° ([23]:  $50-51^\circ$ ).  $[\alpha]_D^{25} = -27,1^\circ$  (c = 0,722, EtOH); [23]:  $[\alpha]_D^{22} = -29,1^\circ$  (c = 10,5, EtOH). IR (CCl<sub>4</sub>): 3400–2450 (br.), 1760s, 1722s, 1435w, 1402w, 1372w, 1350w, 1290m, 1215s, 1130w, 1095w, 1070m, 1025w, 945w. <sup>1</sup>H-NMR (90 MHz, CDCl<sub>3</sub>): 1,27 (t, J = 7, CH<sub>3</sub>CH<sub>2</sub>O); 2,13 (s, Ac); 2,93 (d, J = 6, CH<sub>2</sub>(3)); 4,23 (q, J = 7, CH<sub>3</sub>CH<sub>2</sub>O); 5,43 (t, J = 6, H–C(2)); 10,0 (br. s, COOH). MS: kein  $M^+$ , 159 (3), 117 (18), 71 (13), 43 (100), 31 (12). Anal. ber. für C<sub>8</sub>H<sub>12</sub>O<sub>6</sub> (204,18): C 47,06, H 5,92; gef.: C 47,07, H 6,11.

Die Spektren von öligem und kristallinem 14 zeigten keinen Unterschied.

2. (2S)-2-Acetoxy-4-hydroxybuttersäure-ethylester (15). Zu einer Lsg. von 20 g (98 mmol) 14 in 200 ml abs. Et<sub>2</sub>O wurden unter N<sub>2</sub> bei -20° 100 ml (*ca.* 100 mmol) 1M Boran-Lsg. (frisch hergestellt nach [24]) getropft. Nach 15 h bei -20° waren laut DC weitere 20 ml Boran-Lsg. notwendig. Nach 5 h wurde auf Eis/H<sub>2</sub>O gegossen, mit Et<sub>2</sub>O/AcOEt 1:1 extrahiert, der Extrakt mit ges. NaCl-Lsg. gewaschen, über MgSO<sub>4</sub> getrocknet und eingedampft. Chromatographie an Kieselgel mit Hexan/AcOEt 1:1 ergab 12 g (64%) 15, Sdp. 120°/0,01 Torr (Kugelrohr). [ $\alpha$ ]<sub>D</sub><sup>22</sup> = -49,1° (*c* = 1,15, EtOH). IR (CHCl<sub>3</sub>): 3480 (br.), 3025w, 2985m, 2965m, 2890w, 1745s, 1600w, 1465w, 1440m, 1425m, 1375s, 1350m, 1300s, 1240s (br.), 1080s, 1060s, 1025s. <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 1,27 (*t*, *J* = 7, CH<sub>3</sub>CH<sub>2</sub>O); 1,93-2,25 (*m*, CH<sub>2</sub>(3)); 2,13 (*s*, Ac); 2,36 (*s*, OH); 3,72 (*t*, *J* = 6, CH<sub>2</sub>(4)); 4,20 (*q*, *J* = 7, CH<sub>3</sub>CH<sub>2</sub>O); 5,13 (*d*, *J* = 6, 9, H-C(2)). MS: 190 (1, *M*<sup>+</sup>), 117 (26), 71 (8), 43 (100). Anal. ber. für C<sub>8</sub>H<sub>14</sub>O<sub>5</sub> (190,20): C 50,52, H 7,42; gef.: C 50,31, H 7,57.

3. (2S)-Acetoxy-4-(2'-tetrahydropyranyloxy)buttersäure-ethylester (16). Zu einer Lsg. von 11 g (57,8 mmol) 15 und 8 ml (86,7 mmol) 3,4-Dihydro-2H-pyran in 150 ml abs.  $CH_2Cl_2$  wurden 1,4 g (5,8 mmol) PyTs [25] gegeben und bei RT. 8 h gerührt. Danach wurde mit  $El_2O$  verdünnt, mit halbges. NaCl-Lsg. gewaschen, über MgSO<sub>4</sub> getrocknet und eingedampft. Nach Trocknen i. HV. 15,1 g (95%) 16, leicht gelbliches Öl, Sdp. 130–135°/0,01 Torr (Kugelrohr). IR (CCl<sub>4</sub>): 2940m, 2860w, 2830w, 1752s, 1475w, 1465w, 1452w, 1440w, 1375m, 1355w, 1322w, 1305w, 1277s, 1204s, 1160w, 1140m, 1125m, 1100m, 1075m, 1038s, 1025m, 975w. <sup>1</sup>H-NMR (90 MHz, CDCl<sub>3</sub>): 1,27 (t,  $J = 7, CH_3CH_2O$ ); 4,17-1,87 (m,  $CH_2(3'), CH_2(4'), CH_2(5')$ ); 1,87-2,20 (m,  $CH_2(3)$ ); 2,07 (s, Ac); 3,38 3,70 (2 m,  $w_{V_2} = 22, CH_2(4), CH_2(6')$ ); 4,13 (q,  $J = 7, CH_3CH_2O$ ); 4,48 (br. s, H-C(2')); 4,97 (dd, J = 6, 7, H-C(2)). MS: 189 (2,  $M \stackrel{t}{-} 85$ ), 173 (41), 145 (12), 103 (12), 101 (14), 85 (81), 57 (18), 43 (100). Anal. ber. für  $C_{13}H_{22}O_6$  (274,32): C 56,92, H 8,08; gef.: C 57,19, H 7,86.

4. (3S)-2-Methyl-5-(2'-tetrahydropyranyloxy) pentan-2,3-diol (17). Die Lsg. von 15 g (54,7 mmol) 16 in 100 ml abs. Et<sub>2</sub>O wurde unter N<sub>2</sub> auf -15° abgekühlt und dann mit 205 ml (328 mmol) 1,6M CH<sub>3</sub>Li-Lsg. in Et<sub>2</sub>O tropfenweise versetzt. Nach 3 h wurden 20 ml H<sub>2</sub>O langsam zugegeben. Dann wurde das Gemisch auf Eis gegossen, mit NH<sub>4</sub>Cl gesättigt und mit Et<sub>2</sub>O/AcOEt 1:1 extrahiert. Die vereinigte org. Phase wurde 3× mit ges. NH<sub>4</sub>Cl-Lsg. und 1× mit ges. NaCl-Lsg. gewaschen, über MgSO<sub>4</sub> getrocknet, eingedampft und der Rückstand an Kieselgel mit Hexan/AeOEt 1:2 chromatographiert: 8,2 g (69%) 17, Sdp. 125°/0,01 Torr (Kugelrohr). IR (CCl<sub>4</sub>): 3510 (br.), 2950s, 2875m, 1468w, 1455w, 1442w, 1385m, 1370m, 1352m, 1325w, 1285w, 1275w, 1260w, 1203m, 1185m, 1162m, 1135s, 1122s, 1075s, 1070s, 1040s, 1025m, 980m. <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 1,17, 1,21 (2 s, CH<sub>3</sub>(1), CH<sub>3</sub>-C(2)); 1,3-2,0 (m, CH<sub>2</sub> (4), CH<sub>2</sub>(3), CH<sub>2</sub>(4'), CH<sub>2</sub>(5')): 2,96 (s, 2 OH); 3,63, 3,85 (2 m, w<sub>1</sub> = 18, 16, 2 CH<sub>2</sub>(5), CH<sub>2</sub>(6'), H-C(3)); 4,60 (br. s, H-C(2')). MS: 218 (1, M <sup>+</sup>), 99 (13), 85 (100), 84 (10), 71 (10), 59 (23), 57 (12), 43 (52), 41 (27). Anal. ber. für C<sub>11</sub>H<sub>22</sub>O<sub>4</sub> (218,30): C 60,52, H 10,16; gef.: C 60,43, H 10,36.

5. (3 S)-2,3-Isopropylidendioxy-2-methyl-5-(2'-tetrahydropyranyloxy) pentan (18). Mit 75 ml (0,6 mol) 2,2-Dimethoxypropan und 350 mg (1,85 mmol) TsOH wurden 7 g (32 mmol) 17 bei RT. gerührt. Zur Aufarbeitung wurde mit Et<sub>2</sub>O verdünnt, die Lsg. 2× mit halbges. NaHCO<sub>3</sub>-Lsg. und mit ges. NaCl-Lsg. gewaschen, über MgSO<sub>4</sub> getrocknet, eingedampft und im Kugelrohr bei 100–105°/0,01 Torr destilliert: 6,2 g (75%) 18. IR (CHCl<sub>3</sub>): 2990s, 2940m, 2860m, 2835s, 1465w, 1455w, 1443w, 1380s, 1371s, 1305w, 1272m, 1230m, 1190m, 1150m, 1115s, 1075s, 1050m, 1032m, 1017m, 1005m, 970w. <sup>1</sup>H-NMR (90 MHz, CDCl<sub>3</sub>): 1,10, 1,26, 1,32, 1,40 (4s, CH<sub>3</sub>(1), CH<sub>3</sub>-C(2), (CH<sub>3</sub>)<sub>2</sub>CO<sub>2</sub>); 1,2–2,0 (m, CH<sub>2</sub>(4), CH<sub>2</sub>(3'), CH<sub>2</sub>(4'), CH<sub>2</sub>(5')); 3,37-4,07 (2m, CH<sub>2</sub>(5), CH<sub>2</sub>(6'), H-C(3)); 4,60 (br. s, H-C(2')). MS: 243 (1,  $M^+$  – 15), 99 (18), 85 (100), 67 (10), 59 (28), 58 (12), 55 (12), 43 (59), 41 (18). Anal. ber. für C<sub>14</sub>H<sub>26</sub>O<sub>4</sub> (258,36): C 65,09, H 10,14; gef.: C 64,94, H 9,89.

6. (3S)-3,4-Isopropylidendioxy-4-methylpentan-1-ol (19). Die Lsg. von 6 g (23,2 mmol) 18 in 50 ml abs. EtOH wurde mit 0,59 g (2,3 mmol) PyTs nach [25] versetzt und bei RT. über Nacht gerührt. Das Gemisch wurde eingeengt, der Rückstand in Et<sub>2</sub>O aufgenommen, die Lsg. 2× mit halbges. NaHCO<sub>3</sub>-Lsg. und mit ges. NaCl-Lsg. gewaschen, über MgSO<sub>4</sub> getrocknet und eingeengt. Nach dem Trocknen i. HV. wurden 3,54 g (88%) 19 erhalten, Sdp. 90–95°/0,02 Torr (Kugelrohr);  $[\alpha]_{12}^{12} = -21,2^{\circ}$  (c = 0,98, EtOH). IR (CHCl<sub>3</sub>): 3530 (br., OH), 2980s, 2935m, 2870m, 1463w, 1453w, 1420w, 1410w, 1380s, 1370s, 1315w, 1262m, 1230m, 1190m, 1135 (sh), 1115s, 1065s, 1030 (sh), 1005s, 948w, 935w, 910w. <sup>1</sup>H-NMR (90 MHz, CDCl<sub>3</sub>): 1,10, 1,25, 1,33, 1,40 (4s, CH<sub>3</sub>(5), CH<sub>3</sub>-C(4), (CH<sub>3</sub>)<sub>2</sub>CO<sub>2</sub>); 1,53–2,0 (m, CH<sub>2</sub>(2)); 2,65 (br. s, OH); 3,70–3,97 (m, CH<sub>2</sub>(1), H–C(3)). MS: 159 (23,  $M^+ - 15$ ), 116 (14), 99 (33), 85 (42), 71 (15), 59 (55), 58 (16), 43 (100), 41 (19). Anal. ber. für C<sub>9</sub>H<sub>18</sub>O<sub>3</sub> (174,24): C 62,04, H 10,41; gef.: C 61,75, H 10,21.

7. p-Toluolsulfonsäure-[(3S)-3,4-isopropylidendioxy-4-methylpentyl]ester (20). Die Lsg. von 3,4 g (19,5 mmol) 19 in 60 ml Pyridin wurde bei  $-10^{\circ}$  portionenweise mit 4,7 g (48,8 mmol) TsCl versetzt und dann 24 h bei 0° aufbewahrt. Nach Einengen i. V. auf  $\frac{1}{3}$  wurde mit dem gleichen Volumen an halbges. NaCl-Lsg. versetzt, dann mit Et<sub>2</sub>O mehrmals extrahiert und das vereinigte Et<sub>2</sub>O-Extrakt mit wässriger CuSO<sub>4</sub>-Lsg. Pyridin-frei gewaschen.

Dann wurde noch 2× mit ges. NaCl-Lsg. gewaschen, über MgSO<sub>4</sub> getrocknet und eingedampft. Das Rohprodukt wurde aus Petrolether (30–60°) umkristallisiert: 5,2 g (81%) **20**, farblose Kristalle, Schmp. 62,5–63° ([13]: 61,5–64,5° [14]: 68°). [ $\alpha$ ]<sub>D</sub><sup>22</sup> = -17° (c = 0,860, CHCl<sub>3</sub>); [13]: -17,6° (c = 0,99, CHCl<sub>3</sub>): 3030 (sh), 2985m, 2935m, 2870w, 1600m, 1495w, 1465m, 1455m, 1400w, 1380s, 1372s, 1362s, 1310m, 1270m, 1190s, 1178s, 1120s, 1100m, 1020m, 1005s, 985m, 958m, 938m, 930m, 924m. <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 1,05 1,21, 1,35 (3s, CH<sub>3</sub>(5), CH<sub>3</sub>-C(4), (CH<sub>3</sub>)<sub>2</sub>CO<sub>2</sub>); 1,79 (q, J = 6, CH<sub>2</sub>(2)); 2,45 (s, CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>); 3,73 (t, J = 6, H–C(3)); 4,19 (m, CH<sub>2</sub>(1)); 7,34 (d,  $J_{AB}$  = 9, 2 arom. H o zu SO<sub>2</sub>); 7,80 (d,  $J_{AB}$  = 9, 2 arom. H m zu SO<sub>2</sub>). MS: 313 (25, M <sup>+</sup> - 15), 155 (21), 141 (20), 99 (69), 98 (22), 91 (33), 85 (19), 83 (12), 81 (93), 71 (21), 59 (26), 58 (14), 43 (100), 41 (20). Anal. ber. für C<sub>16</sub>H<sub>24</sub>O<sub>5</sub>S (328,43): C 58,51, H 7,37; gef.: C 58,26, H 7,48.

8. (3S)-5-Brom-2,3-isopropylidendioxy-2-methylpentan (21). Die Lsg. von 4,7 g (14,5 mmol) 20 in 50 ml trockenem 1,2-Dimethoxyethan wurde mit 2,3 g (52 mmol) H<sub>2</sub>O-freiem LiBr versetzt und 15 h bei 50° gerührt. Nach Abkühlung auf RT. wurde mit Et<sub>2</sub>O verdünnt, mit H<sub>2</sub>O und ges. NaCl-Lsg. gewaschen, über MgSO<sub>4</sub> getrocknet und eingedampft. Chromatographie an Kieselgel mit Hexan/Et<sub>2</sub>O 1:1 und Kugelrohrdestillation bei 115–120°/60 Torr lieferten 3,25 g (95%) 21 als farbloses Öl.  $[\alpha]_{D}^{22} = -39,7°$  (c = 0,844, EtOH). IR (CHCl<sub>3</sub>): 2985s, 2940m, 2870m, 1465m, 1455m, 1445m, 1420w, 1380s, 1372s, 1309m, 1270s, 1235s, 1190s, 1150m, 1115s, 1105s, 1050s, 1034m, 1000s, 965w, 940m. <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 1,10, 1,28, 1,34, 1,40 (4s, CH<sub>3</sub>(1), CH<sub>3</sub>-C(2), (CH<sub>3</sub>)<sub>2</sub>CO<sub>2</sub>); 1,50–2,30 (m, CH<sub>2</sub>(4)); 3,33–3,70 (m, CH<sub>2</sub>(5)); 3,84 (dd, J = 4, 10, H-C(3)). MS: 223 (19,  $M^+ - 15$ ), 221 (19), 181 (16), 179 (17), 99 (21), 85 (22), 81 (18), 59 (32), 58 (15), 43 (100), 42 (12), 41 (33). Anal. ber. für C<sub>9</sub>H<sub>17</sub>BrO<sub>2</sub>: C 45,58, H 7,23; gef.: C 45,45, H 7,11.

9. (6S,2E)-6.7-Isopropylidendioxy-3,7-dimethyl-2-octensäure-methylester (23). In wenig abs. Et<sub>2</sub>O wurden 506 mg (20,8 mmol) Mg-Griess (Fluka) unter N2 über Nacht gerührt. Mit 3 Tropfen 1,2-Dibromethan wurde die Reaktion gestartet und das Gemisch erwärmt. Zur unter Rückfluss kochenden Lsg. wurden innert 2,5 h 2 g (8,4 mmol) 21 in 100 ml abs. Et<sub>2</sub>O getropft und weitere 2 h gekocht. Nach Abkühlung wurde die Grignardlösung mit N2-Überdruck durch einen Teflon-Schlauch mit eingeschobener Watte als Filter in einen Tropftrichter übergeführt (Titration nach [26] ergab 7,18 mmol Grignard-Reagens (85% bzgl. 21)). Unter Ar und Feuchtigkeitsausschluss wurden zuerst analog zu [27] zu einer Suspension von 2,73 g (14,4 mmol) reinem CuI [28] und 35 ml abs. Et<sub>2</sub>O 1,75 ml (21,17 mmol) frisch dest. Pyrrolidin gegeben und 15 min bei RT. gerührt. Nach Abkühlen auf -90° bis -95° wurden dazu langsam 100 ml Grignard-Lsg. getropft. Nach 1,5 h kräftigem Rühren bei -90° war der Gilman-I-Test [29] negativ. Hierauf wurden 703 mg (7,2 mmol) 2-Butinsäure-methylester in 20 ml abs. Et<sub>2</sub>O zugetropft. Nach 3 h bei -90° wurde das ockergelbe, trübe Gemisch schnell mit 15 ml halbgefrorenem MeOH hydrolysiert und auf eiskalte, ges. NH<sub>4</sub>Cl-Lsg. gegossen. Nach Phasentrennung wurde die wässr. Phase noch 4× mit Et<sub>2</sub>O extrahiert, die vereinigte Et<sub>2</sub>O-Phase mit ges. NH<sub>4</sub>Cl-Lsg. und ges. NaCl-Lsg. gewaschen, über MgSO<sub>4</sub> getrocknet und eingedampft: 1,75 g Öl. In einem analogen Ansatz wurden 1,1 g (4,6 mmol) 21 umgesetzt. Die vereinigten Rohprodukte wurden an Kieselgel mit Hexan/Aceton 9:1 chromatographiert: 2,15 g (64% bzgl. 21) 23 und 0,57 g (14% bzgl. 21) Dimeres (weniger polar). 23: Sdp. 105°/10<sup>-2</sup> Torr (Kugelrohr). GC (135°-190°): 0,6, 4,27 (98,7%, (E)-Isomer), 3,31 min (0,4%, (Z)-Isomer).  $[\alpha]_{D}^{22} = -7.9^{\circ}$  (c = 0,782 EtOH). 1R (CHCl<sub>3</sub>): 2985s, 2950m, 2940m, 2870w, 1710s, 1655 (sh), 1650s, 1450 (sh), 1435m, 1380s, 1372s, 1360m, 1330w, 1275m, 1235m, 1190m, 1155s, 1115s, 1078w, 1020m, 1000m, 910m. <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 1,09, 1,24, 1,32, 1,41 (4s, CH<sub>3</sub>-C(7), CH<sub>3</sub>(8), (CH<sub>3</sub>)<sub>2</sub>CO<sub>2</sub>); 1,4-2,5 (m,  $CH_2(5), CH_2(4)); 2,18 (d, J = 2, CH_3-C(3)); 3,5-3,8 (m, H-C(6)); 3,69 (s, CH_3O); 5,71 (m, H-C(2)).$ <sup>13</sup>C-NMR (20 MHz, CDCl<sub>3</sub>): 18,84 (q, CH<sub>3</sub>-C(3)); 23,00, 26,12 (2q, 2 CH<sub>3</sub>-C(7)); 26,94, 28,62 (2q, (CH<sub>3</sub>)<sub>2</sub>CO<sub>2</sub>); 27,47 (t, C(5)); 38,13 (t, C(4)); 50,71 (q, CH<sub>3</sub>O); 80,09 (s, C(7)); 82,70 (d, C(6)); 106,81 (s, (CH<sub>3</sub>)<sub>2</sub>CO<sub>2</sub>); 115,72 (d, C(2)); 159,14 (s, C(3)); 167,05 (s, C(1)). MS: 241 (45, M<sup>+</sup> – 15), 167 (58), 149 (21), 142 (11), 140 (24), 139 (11), 127 (11), 125 (17), 121 (71), 114 (10), 108 (10), 95 (28), 85 (49), 84 (11), 82 (14), 81 (75), 71 (39), 69 (13), 67 (12), 59 (63), 58 (31), 55 (10), 43 (100). Anal. ber. für  $C_{14}H_{24}O_4$  (256,35): C 65,59, H 9,44; gef.: C 65,48, H 9,29.

10. (6S,2E)-6,7-Isopropylidendioxy-3,7-dimethyl-2-octen-1-ol (24). Unter N<sub>2</sub> und Kühlung auf 0° wurden zu 2,0 g (7,8 mmol) 23 in 60 ml abs. Et<sub>2</sub>O 15 ml (15 mmol) 1M DIBAH in Hexan getropft und dann 30 min bei 0° gerührt. Zur Aufarbeitung wurde die Lsg. in eiskalte, ges. Seignettesalz-Lsg. gegossen, 2 h bei RT. gerührt und dann mit Et<sub>2</sub>O extrahiert. Die vereinigten Et<sub>2</sub>O-Phasen wurden mit ges. NH<sub>4</sub>Cl-Lsg., H<sub>2</sub>O und ges. NaCl-Lsg. gewaschen, über MgSO<sub>4</sub> getrocknet und eingedampft. Nach Trocknen i. HV. wurden 1,69 g (95%) 24 als Öl erhalten, Sdp. 105°/0,05 Torr (Kugelrohr), [ $\alpha$ ]<sub>D</sub><sup>2</sup> = -1,9° (c = 0,864, EtOH). Entgegen den Angaben von [12] konnte die Verbindung nicht kristallisiert werden. IR (CHCl<sub>3</sub>): 3600m, 2975s, 2930m, 2860m, 1660w, 1450m, 1375s, 1365s, 1270m, 1255m, 1230m, 1185m, 1110s, 1050w, 995s, 945w, 908w. <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 1,10, 1,24, 1,33, 1,42 (4s, CH<sub>3</sub>-C(7), CH<sub>3</sub> (8), (CH<sub>3</sub>)<sub>2</sub>CO<sub>2</sub>): 1,70 (s, CH<sub>3</sub>-C(3)): 1,3-2,5 (m, CH<sub>2</sub>(4), CH<sub>2</sub>(5), OH); 3,66 (dd, J = 6, 9, H-C(6)); 4,15 ( $d, J = 7, CH_2(1)$ ); 5,46 (br. t, J = 7, H-C(2)). MS: 213 (19,  $M^+ - 15$ ), 142 (21), 135 (21), 97 (23), 95 (23), 85 (48), 84 (44), 81 (85), 71 (85), 69 (31), 59 (62), 43 (100), 41 (60). Anal. ber. für C<sub>13</sub>H<sub>24</sub>O<sub>3</sub> (228,33): C 68,38, H 10,59; gef.: C 68,46, H 10,54.

11. Essigsäure-[ (6 S,2 E)-6,7-isopropylidendioxy-3,7-dimethyl-2-octen-1-yl]ester (25). Nach üblicher Methode wurden 1,56 g (13,7 mmol) 24 mit Ac<sub>2</sub>O/Pyridin acetyliert. Kugelrohrdestillation bei 90°/10<sup>-2</sup> Torr ergab 1,73 g (93%) 25  $[\alpha]_{D}^{22} = -2,8^{\circ}$  (c = 0,958, MeOH; [12]:  $[\alpha]_{D}^{23} = -1,2^{\circ}$  (c = 3,18, MeOH)). IR (CHCl<sub>3</sub>): 2950s, 2940m, 2875m, 1730s, 1720w, 1605w, 1455m, 1380s, 1373s, 1240s, 1115m, 1065w, 1025m, 1000m, 955w, 915w. <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 1,10, 1,24, 1,32, 1,41 (4s, CH<sub>3</sub>-C(7), CH<sub>3</sub>(8), (CH<sub>3</sub>)<sub>2</sub>CO<sub>2</sub>); 1,4–2,5 (m, CH<sub>2</sub>(4), CH<sub>2</sub>(5)); 1,73 (s, CH<sub>3</sub>-C(3)); 2,04 (s, Ac); 3,62 (dd, J = 6, 9, H–C(6)); 4,60 (d, J = 7, CH<sub>2</sub>(1)); 5,38 (m, H–C(2)). MS: 255 (5,  $M^+$  – 15), 135 (18), 85 (21), 84 (16), 81 (41), 79 (29), 71 (57), 67 (19), 59 (44), 58 (18), 43 (100), 41 (38). Anal. ber. für C<sub>15</sub>H<sub>26</sub>O<sub>4</sub> (270,37): C 66,64, H 9,69; gef.: C 66,35, H 9,52.

12. Essigsäure-[(6S,2E)-6,7-dihydroxy-3,7-dimethyl-2-octen-1-yl]ester (26). Eine Lsg. von 1,55 g (5,8 mmol) 25 in 20 ml HOAc/H<sub>2</sub>O 9:1 wurde 15 h bei 60° gerührt. Nach Verdünnen mit H<sub>2</sub>O wurde mehrmals mit Et<sub>2</sub>O/AcOEt extrahiert, der vereinigte Extrakt mit ges. NaCl-Lsg. gewaschen, über MgSO<sub>4</sub> getrocknet und eingedampft. Chromatographie an Kieselgel mit Et<sub>2</sub>O ergab 1,08 g (82%) 26 als farbloses Öl, Sdp. 135°/0,01 Torr (Kugelrohr);  $[\alpha]_{12}^{22} = -25$ ,7° (c = 0,736, EtOH). IR (CHCl<sub>3</sub>): 3575 (br.), 2980m, 2930m, 2880w, 1730s, 1670w, 1445m, 1385m, 1365m, 1235s, 1160w, 1120w, 1075m, 1060m, 1022m, 957m. <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 1,16, 1,20 (2s, CH<sub>3</sub>-C(7), CH<sub>3</sub>(8)); 1,3-2,5 (m, CH<sub>2</sub>(4), CH<sub>2</sub>(5)); 1,72 (s, CH<sub>3</sub>-C(3)); 2,05 (s, Ac); 2,58 (s, 2 OH); 3,33 (dd, J = 4, 9, H-C(6)); 4,59 (d,  $J = 7, CH_2(1)$ ); 5,34 (m, H-C(2)). Anal. ber. für C<sub>12</sub>H<sub>22</sub>O<sub>4</sub> (230,31): C 62,58, H 9,63; gef.: C 62,38, H 9,87.

13. Essigsäure-[(6S,2E)-6-acetoxy-7-hydroxy-3,7-dimethyl-2-octen-1-yl]ester (27). Die Lsg. von 1,01 g (4,4 mmol) **26** wurde wie unter 11 acetyliert. Nach Chromatographie an Kieselgel mit Et<sub>2</sub>O wurden 0,98 g (82%) **27** als farbioses Öl erhalten.  $[\alpha]_{22}^{D2} = -4,5^{\circ}$  (c = 1,080, EtOH; [7]:  $[\alpha]_{20}^{D0} = +4,13^{\circ}$  (c = 1,066, EtOH) für Enantiomeres). IR (CHCl<sub>3</sub>): 3490 (br.), 3020w, 2980m, 2835w, 1730s, 1670w, 1445w, 1372m, 1240 (br.), 1160w, 1125w, 1080w, 1045m, 1020m, 950m. <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 1,19 (s, CH<sub>3</sub>-C(7), CH<sub>3</sub>(8)); 1,5–2,2 (m, CH<sub>2</sub>(4), CH<sub>2</sub>(5)); 1,70 (s, CH<sub>3</sub>-C(3)); 1,77 (s, OH); 2,05, 2,10 (2s, 2Ac); 4,58 (d, J = 7, CH<sub>2</sub>(1)); 4,75 (dd, J = 4, 8, H–C(6)); 5,30 (m, H–C(2)). Anal. ber. für C<sub>14</sub>H<sub>24</sub>O<sub>5</sub> (272,34): C 61,74, H 8,88; gef.: C 61,45, H 8,85.

14. Essigsäure-[(35,6E)-2,8-dihydroxy-2,6-dimethyl-6-octen-3-yl]ester (28). Die Lsg. von 0,93 g (3,4 mmol) 27 in 20 ml MeOH wurde mit 3 g KHCO<sub>3</sub> 45 ml H<sub>2</sub>O versetzt und 6 Tage bei RT. gerührt. Nach Einengen wurden H<sub>2</sub>O und Et<sub>2</sub>O zugegeben, die wässr. Phase mit Et<sub>2</sub>O extrahiert, die vereinigte Et<sub>2</sub>O-Phase mit ges. NaCl-Lsg. gewaschen, über MgSO<sub>4</sub> getrocknet und eingedampft. Nach Chromatographie an Kieselgel mit Hexan/Aceton 1:1 und Trocknen i. HV. wurden 530 mg (68%) 28 erhalten.  $[\alpha]_{D}^{22} = -5.5^{\circ}$  (c = 0.678, EtOH). IR (CHCl<sub>3</sub>): 3600*m*, 3440*m*, 3030*w*, 2980*m*, 2935*m*, 2880*m*, 1725*s*, 1670*w*, 1440*w*, 1375*s*, 1245*s*, 1160*w*, 1125*w*, 1068*w*, 1040*m*, 1020*m*, 985*m*, 950*m*. <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 1,19 (s CH<sub>3</sub>(1), CH<sub>3</sub>-C(2)); 1,5–2,2 (m, CH<sub>2</sub>(4), CH<sub>2</sub>(5), 2 OH); 1,66 (s, CH<sub>3</sub>-C(6)); 2,10 (s, Ac); 4,12 (d, J = 7, CH<sub>2</sub>(8)); 4,80 (dd, J = 4, 8, H-C(3)); 5,43 (m, H-C(7)). Anal. ber. für C<sub>12</sub>H<sub>22</sub>O<sub>4</sub> (230,31): C 62,58, H 9,63; gef.: C 62,32, H 9,90.

15.  $[(6S,2E)-6-Acetoxy-7-hydroxy-3,7-dimethyl-2-octen-1-yl]triphenylphosphonium-bromid (29). Die Lsg. von 490 mg (2,13 mmol) 28 in 15 ml abs. Et<sub>2</sub>O wurde bei <math>-25^{\circ}$  mit 0,07 ml (0,78 mmol) PBr<sub>3</sub> versetzt, darauf 30 min gerührt und mit 10 ml eisgekühlter, ges. NaHCO<sub>3</sub>-Lsg. versetzt. Die wässr. Phase wurde mit Et<sub>2</sub>O extrahiert, die Et<sub>2</sub>O-Phase mit ges. NaHCO<sub>3</sub>-Lsg. und ges. NaCl-Lsg. gewaschen, über MgSO<sub>4</sub> getrocknet und eingedampft: 575 mg (92%) Bromid. Ohne weitere Reinigung wurde zu 575 mg (1,9 mmol) Bromid in 7 ml Benzol die Lsg. von 514 mg (1,9 mmol) Ph<sub>3</sub>P in 5 ml Benzol getropft. Nach 48 h wurde der weisse Niederschlag abgenutscht und aus CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O umkristallisiert: 567 mg (52%) 29 als farblose Kristalle, Schmp. 190,5–191,5°.  $[\alpha]_D = -2,4^{\circ}$  (c = 0.822, EtOH). <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>): 1,13 (s, CH<sub>3</sub>–C(7), CH<sub>3</sub>(8)); 1,35, (d, J = 4, CH<sub>3</sub>–C(3)); 1,5–2,2 (m, CH<sub>2</sub>(4), CH<sub>2</sub>(5)); 2,05 (s, Ac); 2,47 (s, OH); 4,55–4,75 (m, CH<sub>2</sub>(1), H–C(6)); 5,13 (m, H–C(2)); 7,5–8,1 (m, 15 arom. H).

16. Diessigsäure-[(2S,Z'S)-1,2,l',2'-tetrahydro-1,1'-dihydroxy- $\psi$ , $\psi$ -carotin-2,2'-diyl]diester (**30**). Zur Lsg. von 350 mg (0,63 mmol) **29** und 62 mg (0,21 mmol) Crocetin-dialdehyd in 5 ml CH<sub>2</sub>Cl<sub>2</sub> wurden bei 0° 0,35 ml 50% wässr. KOH-Lsg. gegeben. Nach 2 h Rühren unter N<sub>2</sub> bei RT. wurde die rote Lsg. auf eisgekühlten Phosphatpuffer (pH 6) gegossen, mit Et<sub>2</sub>O extrahiert, die vereinigte org. Phase mit H<sub>2</sub>O und ges. NaCl-Lsg. gewaschen und über Na<sub>2</sub>SO<sub>4</sub> getrocknet. Der nach dem Eindampfen anfallende rote Lack (375 mg) wurde durch Säulenchromatographie an desaktiviertem Kieselgel (10% H<sub>2</sub>O) mit CH<sub>2</sub>Cl<sub>2</sub>/AcOEt 3:1 gereinigt. Das Eluat der tiefroten, exakt abgegrenzten Hauptzone wurde in 9 Fraktionen aufgefangen. In den Fraktionen 4-6 (32 mg, 22%) war der (all-*E*)-Isomerengehalt am grössten. Aus Hexan/Et<sub>2</sub>O und sehr wenig CH<sub>2</sub>Cl<sub>2</sub> wurden nach 2maliger Umkristallisation 8 mg Kristalle erhalten, Schmp. 143–145°. HPLC (A/B 65:35, Fluss 1,5 ml/min): Gemisch von (all-*E*)-**30** und einem (*Z*)-Isomer, das strukturell nicht aufgeklärt wurde. UV/VIS (Et<sub>2</sub>O): 498 (128 300), 468 (151 500), 444 (108 900). MS: 689 (10,  $M^+$ +1).

17. Essigsäure-[(6R,2E)-6,7-epoxy-3,7-dimethyl-2-octen-1-yl]ester (34) und (6R,2E)-6,7-Epoxy-3,7-dimethyl-2-octenol (31) wurden nach [7] hergestellt;  $31: [\alpha]_{22}^{22} = +8,5^{\circ}$  (c = 0,970, MeOH; [7]:  $[\alpha]_{22}^{22} = +7,5^{\circ}$  (c = 1,66, MeOH); [10]:  $[\alpha]_{22}^{22} = -9,1^{\circ}$  (c = 0,7, MeOH) für das Enantiomere).

18. [(6 R, 2 E)-6,7-Epoxy-3,7-dimethyl-2-octen-1-yl]triphenylphosphonium-bromid (32). Zu einer Lsg. von 1,22 g (6,83 mmol) NBS in 25 ml CH<sub>2</sub>Cl<sub>2</sub> wurden nach [29] bei 0° 0,6 ml (8,19 mmol) Me<sub>2</sub>S zugetropft. Dann wurde das Gemisch auf  $-20^{\circ}$  gekühlt und mit 775 mg (4,55 mmol) 31 in 5 ml CH<sub>2</sub>Cl<sub>2</sub> versetzt. Danach wurde bei 0° 2 h gerührt, mit Pentan verdünnt und auf Eis/H<sub>2</sub>O gegossen. Die org. Phase wurde abgetrennt, die H<sub>2</sub>O-Phase mit Pentan extrahiert, die vereinigte org. Phase mit ges. NaCl-Lsg. gewaschen, über MgSO<sub>4</sub> getrocknet und eingedampft: 855 mg (3,66 mmol, 81%) Bromid. Ohne weitere Reinigung wurde letzteres in 3 ml abs. Benzol zu einer Lsg. von 961 mg (3,67 mmol) Ph<sub>3</sub>P in 4 ml abs. Benzol getropft. Nach 48 h bei RT. wurde das Gemisch mit Et<sub>2</sub>O verdünnt, der weisse Niederschlag abgenutscht und aus CH<sub>2</sub>Cl<sub>2</sub>/Et<sub>2</sub>O umkristallisiert: 1,34 g (60%) 32, weisse Kristalle, Schmp. 178–185°.  $[\alpha]_{12}^{27} = +8,1^{\circ}$  (c = 0,886, EtOH). <sup>1</sup>H-NMR (80 MHz, CDCl<sub>3</sub>); 1,20, 1,25 (2s, CH<sub>3</sub>--C(7), CH<sub>3</sub>(8)); 1,42 (d, J = 4, CH<sub>3</sub>--C(3)); 1,85-2,3 (m, CH<sub>2</sub>(4), CH<sub>2</sub>(5)); 2,55 (dd, J = 3, 4, H--C(6)); 4,4–4,8 (m, CH<sub>2</sub>(1)); 5,0–5,35 (m, H--C(2)); 7,5–8,03 (m, 15 arom. H).

19.  $(2R,2'R)-1,2,1',2'-Diepoxy-1,2,1',2'-tetrahydro-\psi,\psi-carotin (33)$  und HPLC-Trennung in das (2R,2'R,all-E)-(1), (2R,2'R,5Z)-(2) und (2R,2'R,7Z)-Isomere 3. Die Lsg. von 789 mg (1,59 mmol) 32 in 6 ml abs. Et<sub>2</sub>O wurde mit 3, 12 ml (1,91 mmol) 0,61 M NaOCH<sub>3</sub>-Lsg. versetzt. Nach 45 min Rühren wurden 157 mg (0,53 mmol) Crocetin-dialdehyd in 5 ml abs. CH<sub>2</sub>Cl<sub>2</sub> zugegeben und 24 h bei RT. gerührt, mit Et<sub>2</sub>O verdünnt, auf halbges. NaCl-Lsg. gegossen und mit Et<sub>2</sub>O extrahiert. Die vereinigten Et<sub>2</sub>O-Phasen wurden 2× mit ges. NaCl-Lsg. gewaschen, über MgSO<sub>4</sub> getrocknet und eingedampft. Der tiefrote Rückstand wurde an desaktiviertem Kieselgel (10% H<sub>2</sub>O) mit Hexan/Et<sub>2</sub>O 1:4 chromatographiert und aus Hexan/Et<sub>2</sub>O und wenig CH<sub>2</sub>Cl<sub>2</sub> kristallisiert: 158 mg (52%) dunkelrotes Gemisch 33. Auftrennung von 15 mg 33 mittels präp. HPLC (A/B 92:8, Fluss 20 ml/min, Detektion 460 nm): 3,2 mg B(= 1), 2 mg C(= 2) und 0,9 mg A(= 3); Kristalle aus Hexan/Et<sub>2</sub>O. Schmp., UV/VIS, CD und <sup>1</sup>H-NMR: Tab. I und 2. MS von 2: 570 (4,  $M^+$  + 2), 569 (7,  $M^+$  + 1), 568 (19,  $M^+$ ).

20. Essigsäure-[(3R, 6E)-2, 8-dihydroxy-2, 6-dimethyl-6-octen-3-yl]ester (37). Analog Exper. 14 wurden aus 2,2 g 36 (hergestellt aus 34 nach [7]) 1,25 g (68%) 37 erhalten.  $[\alpha]_D^{22} = +4, 7^\circ$  (c = 0,78, EtOH). Die übrigen spektroskopischen Daten stimmen mit denjenigen des Enantiomeren 28 (s. Exper. 14) überein.

21.  $[(6 \text{ R}, 2\text{ E})-6-Acetoxy-7-hydroxy-3,7-dimethyl-2-octen-1-yl]triphenylphosphonium-bromid (38). Die Lsg. von 1,27 g (5,51 mmol) 37 in 30 ml abs. Et<sub>2</sub>O wurde bei <math>-30^{\circ}$  mit 3 ml Lsg. von 0,25 ml PBr<sub>3</sub> in Et<sub>2</sub>O versetzt. Nach 30 min bei 0° wurde analog *Exper. 15* aufgearbeitet und dann das erhaltene Bromid mit 1,45 g (5,51 mmol) Ph<sub>3</sub>P versetzt. Nach 48 h Rühren bei RT. wurde das ausgefallene 38 analog *Exper. 15* aufgearbeitet: 1,72 g (61%) weisse Kristalle, Schmp. 165–180°.  $[\alpha]_D^{22} = +2,32^{\circ}$  (c = 0,904, EtOH, *Exper. 15*:  $[\alpha]_D^{22} = -2,4^{\circ}$  (c = 0,822, EtOH) für Enantiomeres).

22. Diessigsäure-[(2R,2'R)-1,2,1',2'-tetrahydro-1,1'-bis(trimethylsilyloxy)- $\psi$ , $\psi$ -carotin-2,2'-diyl]diester (40) und HPLC-Trennung in das (2R,2'R,all-E)- (4), (2R,2'R,7Z)- (5) und (2R,2'R,7Z,7'Z)-Isomere 6. Es wurden 360 mg (8,25 mmol) einer 55 proz. Suspension von NaH in Mineralöl mit Pentan gewaschen, dann unter N<sub>2</sub> mit 10 ml CH<sub>2</sub>Cl<sub>2</sub> überschichtet und bei 0° mit 560 mg (1 mmol) **38** in 5 ml CH<sub>2</sub>Cl<sub>2</sub> versetzt. Dazu wurde eine Lsg. von 110 mg (0,371 mmol) Crocetin-dialdehyd in 5 ml CH<sub>2</sub>Cl<sub>2</sub> getropft. Darauf wurde 18 h bei RT. und 7 h unter Rückfluss gerührt. Nach Zugabe von ges. NaCl-Lsg. und Extraktion mit Et<sub>2</sub>O und üblicher Aufarbeitung wurde an desakt. Kieselgel (10%) mit Hexan/AcOEt 1:9 chromatographiert. Das aus der Hauptzone erhaltene Isomerengemisch **39** wurde kurz i. HV. getrocknet, und dann in 30 ml Pyridin gelöst und mit 1,5 ml Hexamethyldisilazan und 1 ml Me<sub>3</sub>SiCl umgesetzt. Nach 30 min Rühren wurde das Gemisch mit Et<sub>2</sub>O verdünnt und auf H<sub>2</sub>O gegossen. Die Et<sub>2</sub>O-Phase wurde abgetrennt, die H<sub>2</sub>O-Phase mit Et<sub>2</sub>O extrahiert, die vereinigte Et<sub>2</sub>O-Phase 3× mit H<sub>2</sub>O und 1× mit ges. NaCl-Lsg. gewaschen, über MgSO<sub>4</sub> getrocknet und eingedampft. Nach Chromatographie an desakt. Kieselgel mit Hexan/Et<sub>2</sub>O 3:2 und Umkristallisation aus Hexan wurden 174 mg (56%) **40** als orangerote Kristalle erhalten. Auftrennung von 55 mg **40** mittels präp. HPLC (A/B 92:8, Fluss 20 ml/min, Detetion 460 nm): 7,4 mg F(=**4)** 15,7 mg E(=**5)** und 9,2 mg D(=**6**); Kristalle aus Hexan/Et<sub>2</sub>O. Schmp., UV/VIS, CD und <sup>1</sup>H-NMR: *Tab. 1* und 2. MS von **5**: 833 (2, *M*<sup>+</sup>), 131 (100).

23. (2 R, 2' R, all-E)- (7), (2 R, 2' R, 7Z)- (8) und (2 R, 2' R, 7Z)-1,2,1',2',-Tetrahydro- $\psi$ , $\psi$ -carotin-1,2,1',2'-tetrol (9). In 9 ml Et<sub>2</sub>O und 9 ml 10% KOH/MeOH wurden 5,2 mg 4 3½ h unter N<sub>2</sub> und Lichtausschluss bei RT. gerührt. Das Gemisch wurde auf H<sub>2</sub>O gegossen und 3× mit CH<sub>2</sub>Cl<sub>2</sub> extrahiert. Die vereinigten CH<sub>2</sub>Cl<sub>2</sub>-Phasen wurden mit ges. NaCl-Lsg. gewaschen und über MgSO<sub>4</sub> getrocknet. Chromatographie an desakt. Kieselgel (10%) H<sub>2</sub>O mit CH<sub>2</sub>Cl<sub>2</sub>/MeOH 9:1 und Umkristallisation aus CHCl<sub>3</sub> ergeben 2,6 mg (69%) 7 als Kristalle. Analog wurden 7,5 mg 5 umgesetzt und chromatographiert. Umkristallisation aus  $CH_2Cl_2/Et_2O$  ergab 4,1 mg (73,4%) 8. Ebenso wurden aus 4,9 mg 6 2,5 mg (70,3%) kristallines 9, umkristallisiert aus CHCl<sub>3</sub>, gewonnen. Schmp., UV/VIS, CD und <sup>1</sup>H-NMR: *Tab. 1* und 2. MS von 8: 604 (4,  $M^{+}$ ).

### LITERATURVERZEICHNIS

- [1] S. Liaaen-Jensen, Pure Appl. Chem. 1976, 47, 129.
- [2] a) J. E. Johansen, Diss. Univ. Trondheim, 1977; b) J. E. Johansen, S. Liaaen-Jensen, Tetrahedron Lett. 1976, 955.
- [3] H. Rønneberg, P. Foss, Th. Ramdahl, G. Borch, O. M. Skulberg, S. Liaaen-Jensen, *Phytochemistry* 1980, 19, 2167.
- [4] a) H. Rønneberg, Diss. Univ. Trondheim, 1980; b) S. Liaaen-Jensen, Pure Appl. Chem. 1985, 57, 649.
- [5] C.H. Eugster, in 'Carotenoid Chemistry and Biochemistry', Proc. 6th Internat. Symp. Carotenoids, Liverpool, 1981, Ed. G. Britton und T.W. Goodwin, Pergamon Press, 1982, S. 1–26.
- [6] H. Meier, 'Synthese von optisch-aktiven Carotinoiden mit nichtcyclischen Endgruppen', Dissertation, Univ. Zürich, 1983.
- [7] W. Eschenmoser, P. Uebelhart, C. H. Eugster, Helv. Chim. Acta 1983, 66, 82.
- [8] H. Cadosch, C. H. Eugster, Helv. Chim. Acta 1974, 57, 1466.
- [9] W. Eschenmoser, C. H. Eugster, Helv. Chim. Acta 1975, 58, 1722.
- [10] M. Kamber, H. Pfander, K. Noack, Helv. Chim. Acta 1984, 67, 968.
- [11] Ch. Arm, H. Pfander, Helv. Chim. Acta 1984, 67, 1540.
- [12] S. Yamada, N. Oh-hashi, K. Achiwa, Tetrahedron Lett. 1976, 2557, 2561.
- [13] S. Terashima, M. Hayashi, Ch. Ch. Tseng, K. Koga, Tetrahedron Lett. 1978, 1763; S. Terashima, Ch. Ch. Tseng, M. Hayashi, K. Koga, Chem. Pharm. Bull. 1979, 27, 758.
- [14] M.A. Abdallah, J.N. Shah, J. Chem. Soc., Perkin Trans. 1 1975, 888.
- [15] L.J. Altman, Ch.Y. Han, A. Bertolino, G. Handy, D. Laungani, W. Müller, St. Schwartz, D. Shanker, W.H. de Wolf, F. Yang, J. Am. Chem. Soc. 1978, 100, 3235.
- [16] K. Imai, S. Marumo, Tetrahedron Lett. 1976, 1211.
- [17] T. Reichstein, J. v. Euw, Helv. Chim. Acta 1938, 21, 1181; C. Juslén, W. Wehrli, T. Reichstein, ibid. 1962, 45, 2285.
- [18] A. Zumbrunn, P. Uebelhart, C. H. Eugster, Helv. Chim. Acta 1985, 68, 1519.
- [19] A. Hofer, C. H. Eugster, Helv. Chim. Acta 1982, 65, 365.
- [20] W. Vetter, G. Englert, N. Rigassi, U. Schwieter, in 'Carotenoids', Eds. O. Isler, H. Gutmann und U. Solms, Birkhäuser, Basel, 1971; G. Englert, in 'Carotenoid Chemistry and Biochemistry', Eds. T. W. Goodwin und G. Britton, Pergamon Press, Oxford, 1982.
- [21] G.P. Moss, Pure Appl. Chem. 1979, 51, 507.
- [22] V. Sturzenegger, R. Buchecker, G. Wagnière, Helv. Chim. Acta 1980, 63, 1074.
- [23] D.H.S. Horn, Y.Y. Pretorius, J. Chem. Soc. 1954, 1460.
- [24] G. Zweifel, H.C. Brown, Org. React. 1963, 13, 32.
- [25] M. Miyashita, A. Yoshikoski, P. A. Grieco, J. Org. Chem. 1977, 42, 3772.
- [26] K. Mützel, in 'Houben-Weyl, Methoden der organischen Chemie', G. Thieme, Stuttgart, 1973, Vol. 13/2a, S. 75.
- [27] R.J. Anderson, V. L. Corbin, G. Cotterell, G. R. Cox, C.A. Henrick, F. Schaub, J. B. Siddall, J. Am. Chem. Soc. 1975, 97, 1197.
- [28] G. H. Posner, C. E. Whitten, J. J. Sterling, J. Am. Chem. Soc. 1973, 95, 7788.
- [29] a) E.J. Corey, C.U. Kim, M. Takeda, *Tetrahedron Lett.* 1972, 4339; b) M.S. Kharasch, O. Reinmuth, 'Grignard Reactions of Nonmetallic Substances', Constable, London, 1954, S.95ff.